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ABSTRACT

In certain cases a space-borne optical instrument with a dielectric window requires a transparent

conductive coating deposited on the window to remove the electrostatic charge collected due to the

bombardment of ionized particles. Semiconductor and metal films are studied for use as transparent

conductive coatings for the front window of far ultraviolet camera. Cr is found to be the best coating

material. The theoretical search for the semiconductor and metal coating materials and experimental

results for ITO and Cr films are reported.

1. INTRODUCTION

Some optical instruments flown on orbiting satellites have exterior dielectric windows. Due to

bombardment by ionized particles, electrostatic charge accumulates on the window which may cause

undesirable effects. This prompted investigation into the properties of a conductive transparent coating

for use as a surface layer to remove the undesirable electrostatic charges.

Transparent conductive coatings combine high optical transmission with good electrical

conductivity and have a number of interesting applications : liquid crystal and gas discharge displays,

front electrodes for solar cells, heating stages for optical microscopes, Ig reflectors, phofoconduCtors in

television camera vidicons, Pokell cells for laser Q-switches, and antistatic coatings.

Combining the properties of transparency and conductivity in the same coating material is not

trivial and is only possible with certain semiconductors and with very thin and very low electrically

resistant metal films. Thin metal films are widely applied as Ig reflectors, but are not extensively used as

transparent semiconductors. ! In general, semiconducting oxides exhibit better electrical and optical

properties than thin metal films. Also, metal films are not very resistant to abrasion and other forms of

mechanical damage.

For applications in which transparency is much more important than electrical conductivity, SnO 2

is usually employed because its absorption edge occurs further into the UV than other oxide materials. In

other classes of devices, in which transparency must be sacrificed for maximum conductivity, indium tin

oxide (ITO) (lnzO3;Sn) is ordinarily used because it yields the highest conductivity and because it can be

etched easily.
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So far studies about transparent conductive coatings have focused only on the visible and IR

regions. In the far ultraviolet (FUV) region, all optical materials are absorbing and reflection optics have

been widely used. Therefore, a transparent conductive coating in the FUV region is a new problem to be

addressed. Published materials for transparent conductive coatings in the visible and IR region were

reviewed by Holland 2 in 1958 and Vossen t in 1977. These papers served as a starting point in our

research to find FUV transparent conductive coatings.

2. INSTRUMENTAL REQUIREMENTS

The FUV imager 3 for the International Solar Terrestrial Physics (ISTP) mission is designed to

image four features of the aurora : O I lines at 130.4 nm and 135.6 run and the N 2 Lyman-Birge-Hopfield

(LBH) bands between 140 nm -160 nm (LBH short) and 160 nm -180 nm (LBH long). The optical

system contains three electro-mechanical devices : an entrance aperture door, a filter wheel, and a folding

mirror. The purpose of the entrance door is to close the instrument during non-operating conditions

(integration, launch, thruster bums), and to protect it. Because this instrument is used at altitudes

between two and nine earth radii (RE), the entrance door is exposed to bombardment by ionized particles

and no buildup of electrostatic charge is allowed. Also, in the event it should fail in the closed position, it

is designed to work as a broad passband window for the entire FUV region. Our research goal was to

develop a conductive coating to meet the following specifications.

a) substrate : 3" diameter, 0.125" thickness MgF 2 window

b) transmittance : > 50 % for entire FUV region

c) resistance : < 10 kD./l'l

d) should be stable chemically and mechanically

3. SEMICONDUCTOR MATERIALS

3.1. Conductivity

Oxide films, deposited by whatever means, appear to grow on oxide substrates as continuous

films from the outset of deposition and do not have the island structure typically found in metal films.

However, due to a smaller number of carriers compared to metal films, thicker films are required to

achieve the same conductivity. Therefore, 200 nm to 400 run thickness is usually required for

semiconductor transparent conductive films in the visible and IR region. 4 For an antistatic film, less

conductivity is required. Haas et. al. 5 achieved 700 D./I'I with 36 nm In203 film and 6 kD,/l'l with 31 nm

In203 +SnO 2 film for a space temperature control application.

The electrical properties of semiconductor films are very dependent on stoichiometry and the

incorporation of impurities, either purposeful or inadvertent. Also they are relatively unstable, chemically,

and depend on the fabrication parameters; fabrication process, starting material, substrate temperature,

deposition rate, and annealing temperature and time. For nominally equivalent materials, even similar

processes often result in quite different properties.



3.2.Transmittance

Previously reported studies about the optical properties of oxide semiconductor coatings have

focused on the visible and Ig regions where oxides have low absorption. The lowest wavelength

reported was 200 nm. Hass et. al. 5 measured their InzO 3 and In203 +SnO 2 coatings prepared by

evaporation and sputtering down to this wavelength. They got 25% transmittance for a 36 nm InzO 3 film

and 23 % with a 31 nm In203 +SnO 2 film at 200 nm. Their spectral measurement results showed that

there was less transmittance at the shorter wavelength.

Dobrowlski et. al. 4 reported optical constants of their ITO films (thickness 184 nm - 412 nm)
formed by ion-assisted deposition down to a wavelength of 400 nm. At 400 rim, the absorption

coefficients were 0.04 - 0.05, but increasing with a very steep gradient.

These prereponed results showed that oxide semiconductors are very absorbing below 400 rim.

Therefore, we need a very thin film to achieve the transmittance requirement.

3.3. Experimental results on the ITO coating

R.F-sputtering was used to fabricate ITO coatings to test the possibility of using semiconductor

antistatic films in the FUV region. ITO was selected as a trial material because it is reported to have the

lowest resistance and the required conductivity could be achieved with minimum thickness. The

sputtering target material was 99.99% {(In203)91% (SNO2)9%} supplied by Angstrom Sciences. The

initial vacuum was 4 - 5 X 10 "5 tOrT and the Ar gas flow inlet was set to reach a vacuum of 5 X 10 .2 ton"

during the sputtering. The oxygen valve was kept closed and the substrate was not heated.

Before deposition onto the MgF 2 substrate, masked and unmasked Pyi'ex 1/2" substrates were

used for testing. We used the masked Pyrex coating to measure the thickness with a Talystep profiler and

found the deposition rate to be 8 nm/minl This deposition rate was used to control the thicknesses

afterwards keeping the parameters the same except for deposition time. The unmasked Pyrex substrate

was used to measure the square resistance by the method of reference 6. In a 4 minute sputtering time,

we obtained 5.7 kD./rl resistance which is very similar to Hass et. al.'s 5 result.

32 nm and 64 nm coatings are deposited on 1/2" diameter and 0.125" thickness MgF 2 substrates

for optical measurements. Our optical measurement system which is located at the NASA Marshall

Space Flight Center is explained elsewhere, v The transmittance at normal incidence and the reflectance at

a 6 ° angle of incidence are shown in Figure 1. The reflectance remained around 15% through the entire

FUV region and the transmittance decreased monotonically to the short wavelength side. The absorption

loss increases at shorter wavelengths. This result seems consistent with Hass et. al.'s s and Doborowalsky

et. al.'s 4 results. It is evident that ITO is not a good material for transparent conductive coatings in the

FUV region. With these disappointing results further experiments to change the deposition parameters

were abandoned.
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Figure 1. Measured transmittances and reflectances of 32 run (solid lines) and 64 nm

(dotted lines) ITO coatings on MgF 2 substrates.

4. METAL COATINGS

4.1. Conductivity

Metal films that have been studied for transparent conductive coating applications include • Au,

Pt, Pd, Ag, Cu, Fe, and Ni. I However, Au is predominantly used. 8 Au is a noble metal that is chemically

stable and has a very low electrical resistance. 9

The most important factor for the conductivity of a thin metal film is island formation. Since, in

nearly every case, metal atoms arrive with energies greater than kT (where T is the substrate

temperature), it is found that some of the atoms reevaporate, some are directly reflected from the

surface, and some lose their energy by moving about the substrate surface until a small cluster, or island,

is formed at a site occupied by a nucleus. As the film gets thicker, there is a coalescence of the islands

and a continuous film is obtained.

The implication of an island structure to transparent conductors is threefoid.l First, the resistivity

of such films is very high. Second, if the islands become quite large, they act to scatter incident light,

rather than transmit it. Third, all other things being equal, a thicker film must be deposited to obtain

sufficient electrical conductivity, but this results in more light absorption loss. Therefore, a thin

continuous film material is better for this purpose than those materials which have lower bulk resistance

Sennett and Scott _° observed the structure of evaporated films of eight different metals in an

electron microscope. They found that for Au and Ag, the thickness for which the aggregation began to

merge was approximately 18 rim. With the resolution obtainable in their electron microscope, a Cr film



asthin as2 nmappearedto be continuous• Therefore, we selected Cr as the best coating material to get

a required conductivity with a minimum thickness.

4.2. Transmittance

We attempted to theoretically estimate the transmittance using the optical constants of metal

coating materials found in references 11 and 12. The transmittance, reflectance, and absorptance can be

calculated by the standard matrix method with known optical constants of the film and substrate and the

thickness of the film. _3 The calculated transmittances for 2 run thickness of Pt, Au, Pd, Ag and Cr films

on MgF 2 substrates are shown in Figure 2. We used the optical constants for a MgF z substrate from
reference 14. As we can see there is little difference in transmittance for candidate materials in the FUV

region. The optical constants of our candidate materials do not differ very much over the entire FUV

region• Therefore, the reflectances from the top surface of the film, assuming very thick films, are similar

and the absorption loss plays the critical role in determining the transmittance. Apparently, the extinction

coefficients ( ie. the imaginary part of optical constant ) are all of the same order of magnitude.
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Figure 2. Calculated transmittances for the 2 nm thickness metal films on MgF z substrates "

Pt (dashed and dotted line), Au (solid line), Pd (dotted line), Ag (dashed line), and

Cr (dashed and double dotted line).

If we neglect the interference effect between multiple reflected waves in the thin film, the ratio of

the transmitted light intensity I to the light intensity Io is given by the relation •

I= exp(_4.___kd)
Io

(l)



Because the values of k are close to 1, the thickness, d, should be smaller than 6 nm to get Ill o > 0.5 for

a wavelength of 120 rim. Au and Ag are not suitable for our purposes.

4.3. Experimental results on the Cr coating

For reason explained in section 4.1, Cr was selected as our trial material. Cr is fairly inert

chemically. Because of its high corrosion resistance, it has been vacuum evaporated to form mirrors on

glass, used for electroplated or evaporated cathodes in Geiger counters with chemically active gas fillings,

and as electrodeposited anti-corrosion layers for the external mountings of electron tubes. 9

We deposited Cr by the evaporation method with an e-beam gun in a 2 X 10.5 ton" vacuum. The

source material was 99.9 % granulate type supplied by Balzers. In order to get good adhesion, the

substrate was heated to 200 °C and the deposition rate was slow.( 4 nm/min ) Before deposition on the

MgF 2 substrate, a Pyrex substrate was used to find the film thickness which satisfied the conductivity

requirement. The thickness and deposition rate were monitored by a Quartz crystal monitor which was

calibrated using the Talystep thickness profiler.

It was found that only a 1 nm thickness Cr coating had good conductivity, with 2.15 kD./0 of

resistance. We monitored the change of the resistance of the Cr coating ( thicknesses of 1 run and 2 am)

which had been kept on a lab shelf without any special care. We measured the square resistance once a

week for the first three months and once a month afterward. There has been no change in the resistance

in 6 months. This also means that the coatings adhere so well that the probes for the resistance

measurement do not make any serious scratches.

Figure 3 shows the transmittance measurements of the 1 nm and 2 nm Cr coatings. The

transmittance of the 1 nm film satisfies the requirement but has a very low transmittance compared to the

calculated transmittance. The reason can be explained by four possibilities. First, the optical constant we

used from the reference is different from that of our coating material. Second, the coatingis oxidized and

has different properties than pure Cr. Third, the absorption of the substrate and the reflection from the

bottom surface of the substrate are not included in the calculation. Fourth, scattering loss is not

calculated.

5. SUMMARY

ITO and Cr thin film materials were tried as antistatic coatings for a FUV camera window.In the

ITO case, at least a 32 nm thickness was required to achieve the desired resistance and it had a severe

absorption loss so that it could not be used as a transparent conductive window material. Instead, Cr

films were found to be good for this purpose. Only 1 am film thickness was required to provide

conductivity and the transmittance was higher than 50 % between the wavelengths of 123 nm and 220

nm. Our Cr coating did not show signs of aging or deterioration for six months and also had good

mechanical adherence.
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Figure 3. Measured transmittances of 1 nm (solid line) and 2 nm(dotted line)Cr coatings on

MgF z substrates.
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